Independent component analysis

From Brede Wiki
Jump to: navigation, search
Topic (help)
Independent component analysis
Abbreviations: ICA
Variations:
Category: Independent component analysis
Parents:

Multivariate analysis

Children:

Functional neuroimaging independent component analysis

Databases: Wikipedia with DBpedia
Search
Papers: DOAJ Google Scholar PubMed
Ontologies: MeSH NeuroLex Wikidata Wikipedia
Other: Google Twitter WolframAlpha

This is a graph with borders and nodes. Maybe there is an Imagemap used so the nodes may be linking to some Pages.

Independent component analysis (ICA) is a group of multivariate analysis techniques. It typically focuses on factorizing a matrix into statistically independent components.

Contents

[edit] Methods

  • JADE
  • Infomax, "Bell-Sejnowski"[1]
  • Extended infomax, infomax with flexible sources (sub-Gaussian and super-Gaussian).[2]
  • Probabilistic ICA (PICA) or "noisy ICA'
  • FastICA[3]
  • Mean field ICA
  • Complex ICA
  • Decorrelation
    • Molgedey-Schuster
    • Dynamic component analysis
    • Convolutive ICA
  • Complex ICA
    • Complex fastICA
    • (Wirtinger)[4]

[edit] Tools

[edit] Papers

  1. Comparison of multi-subject ICA methods for analysis of fMRI data
  2. Ingrid Daubechies, E. Roussos, S. Takerkart, M. Benharrosh, C. Golden, K. D'Ardenne, W. Richter, J. D. Cohen, J. Haxby (2009). "Independent component analysis for brain fMRI does not select for independence". Proceedings of the National Academy of Sciences of the United States of America 106(26): 10415-10422.

[edit] References

  1. A. J. Bell, T. J. Sejnowski (1995). "An information maximisation approach to blind separation and blind deconvolution". Neural Computation 7(6): 1129-1159. [1].
  2. T.-W. Lee, M. Girolami, T. J. Sejnowski (1999). "Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources". Neural Computation 11(2): 417-441.
  3. A. Hyvärinen (1999). "Fast and robust fixed-point algorithms for independent component analysis". IEEE Transactions on Neural Networks 10(3): 626-634.
  4. T. Adali, Li Hualiang, M. Novey, J.-F. Cardoso (2008). "Complex ICA using nonlinear functions". IEEE Transactions on Signal Processing 56(9): 4536 - 4544. doi: 10.1109/TSP.2008.926104.
  5. http://www.cis.hut.fi/projects/ica/fastica/
Personal tools